Heat transfer at a stagnation point of impinging round air jet at low Reynolds numbers
نویسندگان
چکیده
منابع مشابه
Axi-symmetric Stagnation–Point Flow and Heat Transfer Obliquely Impinging on a Rotating Circular Cylinder
Laminar stagnation flow, axi-symmetrically yet obliquely impinging on a rotating circular cylinder, as well as its heat transfer is formulated as an exact solution of the Navier-Stokes equations. Rotational velocity of the cylinder is time-dependent while the surface transpiration is uniform and steady. The impinging stream is composed of a rotational axial flow superposed onto irrotational rad...
متن کاملImpinging laminar jets at moderate Reynolds numbers and separation distances.
An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described, where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured simultaneously and determines the Bernoulli velocity. The flow field is simul...
متن کاملHeat Transfer of an Impinging Jet on a Plane Surface
Abstract—A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transf...
متن کاملModeling of Heat Transfer in a Mist/Steam Impinging Jet
The addition of mist to a flow of steam or gas offers enhanced cooling for many applications, including cooling of gas turbine blades. The enhancement mechanisms include effects of mixing of mist with the gas phase and effects of evaporation of the droplets. An impinging mist flow is attractive for study because the impact velocity is relatively high and predictable. Water droplets, less than 1...
متن کاملNoisy swimming at low Reynolds numbers.
Small organisms (e.g., bacteria) and artificial microswimmers move due to a combination of active swimming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number. Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATEC Web of Conferences
سال: 2017
ISSN: 2261-236X
DOI: 10.1051/matecconf/201711502014